Hydrodynamic characteristics of submerged vegetation flow with non-constant vertical porosity

نویسندگان

  • Mingdeng Zhao
  • Zilong Fan
چکیده

In order to investigate the influence of the vertical variation of porosity on open-channel flow with submerged vegetation, vertical non-homogeneous stumps and stems in submerged vegetation flow are simulated with truncated cones in a laboratory flume. First, porosity is defined as a function of water depth. A new governing equation for vegetation flow is established on the basis of the poroelastic media flow theory, and its analytical solution is obtained with the finite analytic method. Then, the fitting expression of permeability is established with experimental data, which shows the variation in permeability with vertical porosity and vegetation density. Finally, the calculated velocity distribution is compared with the measured velocity distribution. The theoretical results are in good agreement with the experimental data, which indicates that the theoretical formula accurately and practically predicts vertical velocity distribution in complex open-channel flow with submerged vegetation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow through Non-submerged Vegetation: a Flume Experiment with Artificial Vegetation

Vegetation growing in the water along rivers plays an important role on the hydrodynamic behavior, on the ecological equilibrium and on the characteristics of the river. It has effects on the flow resistance and, as a result, has a large impact on water levels. The influence of non-submerged vegetation on flow is not so clear as yet; it needs to be further studied. The Acorus Calmus L is a kind...

متن کامل

Conjugate Heat Transfer of MHD non-Darcy Mixed Convection Flow of a Nanofluid over a Vertical Slender Hollow Cylinder Embedded in Porous Media

In this paper, conjugate heat transfer of magneto hydrodynamic mixed convection of nanofluid about a vertical slender hollow cylinder embedded in a porous medium with high porosity have been numerically studied. The Forchheimer’s modification of Darcy’s law was used in representing the nanofluid motion inside the porous media. The governing boundary layer equations were transformed to non-dimen...

متن کامل

Vertical Velocity Distribution in Open-Channel Flow with Rigid Vegetation

In order to experimentally investigate the effects of rigid vegetation on the characteristics of flow, the vegetations were modeled by rigid cylindrical rod. Flow field is measured under the conditions of submerged rigid rod in flume with single layer and double layer vegetations. Experiments were performed for various spacings of the rigid rods. The vegetation models were aligned with the appr...

متن کامل

Characteristics of Submerged Flow Below Gate With Sill in Non-Prismatic Channels

The characteristics of submerged flow below vertical gate with sill upstream of horizontal diverging channel reach are analyzed based on experimental investigation. The experimental program is conducted in a laboratory flume with 10 cm wide, 31 cm deep and 3.0 m long. A diverging channel reach with fixed length and constant divergence angle is used. Polygonal sills with constant height, constan...

متن کامل

Analysis of Pseudo-Turbulence Flow Induced by Bubble Periodic Formation in Non-Newtonian Fluids

Laser Doppler Velocimetry (LDV) has been employed to determine pseudo-turbulence characteristics of the flow field around bubble train forming in non-Newtonian caboxymethylcellulose (CMC) aqueous solution at low gas flow rate condition. The Reynolds stress and turbulent intensity of the liquid were investigated by means of Reynolds time-averaged method. The experimental results show that ax...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017